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In the present paper, the vibration of a cylindrical piezoelectric transducer induced by
applied voltage, which can be used as the stator transducer of a cylindrical micromotor, is
studied based on shell theory. The transducer is modelled as a thin elastic cylinder. The
properties of the vibration modes of the transducer, such as mode frequencies and
amplitude ratios of the mode shapes, are determined following Galerkin method. The
response of the transducer under the four electric sources with 90° phase difference is then
obtained by the modal summation method. With the results, the performance of the
transducer under the electric sources can be estimated. The present work provides a general
and precise theoretical modelling on the dynamical movement of the transducer.

© 2002 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

Closed circular cylindrical shell type piezoelectric transducers have been widely used in
electromechanical devices. One of the successful applications is in the development of
cylindrical-type ultrasonic micromotors [1]. The key component of the motors is a filmed
or bulk piezoelectric tube called cylindrical stator transducer, as shown in Figure 2. It
consists of a piezoceramic tube, four equal strip electrodes, where the electric wires are
connected. The poling direction of the cylinder is in the thickness direction. When two
opposite electric sources with applied frequency, which can excite fundamental bending
mode of the cylinder, are connected to one pair of the electrodes facing each other, the
bending vibration of the stator transducer is generated by the piezoelectric length-
extensional effect. By applying four such electrical sources with 90° phase difference to
each other simultaneously, the rotation mode of the stator transducer is excited, and a
one-wavelength travelling wave is generated on the end surfaces of the stator, which drives
the rotors in contact with the transducer by frictional forces. The motion principle of the
motor is briefly shown in Figure 1.

Although the cylindrical ultrasonic micromotors have been investigated for many years,
most of the efforts are essentially experimental. Theoretical modelling seems to lag behind
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Figure 1. Principle of cylindrical ultrasonic micromotor [1].
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Figure 2. A radially polarized piezoelectric circular cylindrical transducer.

the experiments. The existing work in the literature is based on simple beam bending
model [1, 2]. Due to restriction of the one-dimensional model, the dynamical
characteristics of the motors cannot be well predicted. Therefore, it is necessary to
construct more reasonable model for the cylindrical-type motors.

In the present study, the vibration of the cylindrical stator transducer of the motor is
addressed. For simplicity, the contact forces between the stator and the rotor are not
considered. The stator transducer is modelled as a thin closed cylindrical shell. The applied
electric sources are treated as equivalent forces acting on the cylinder. To solve the shell
equations, the form of the dynamic displacement components of the cylinder model is
assumed based on the motion principle of the motor, and Galerkin method is applied to
obtain the approximate dynamic characteristics. With the analysis, the mode shapes, the
resonance frequencies, the vibration amplitudes, and the performance of the cylindrical
transducer can be estimated.



ANALYSIS OF CYLINDRICAL PIEZOELECTRIC TRANSDUCER 429
2. EQUATIONS OF MOTION

A piezoelectric cylindrical transducer closed in the o, direction is shown in Figure 2. The
thickness, length, and mean radius of the cylinder are denoted by /4, L, and R respectively.
The transducer can be defined by cylindrical co-ordinate system with o-, ®»-, and o3- axis,
in which o; defines the longitudinal direction (length), «, the circumferential direction, and
o3 the transverse direction.

For the thin piezoelectric shell poled in radial direction, only electric field E5 along the
thickness direction is considered. For the applied voltage V, the electric field E; can be
expressed as [3]

V(t
E3:—#F(OC]7OC2), (1)
where F(ay,07) designates the effective surface electrode, that is, F (o, 02) = 1, if (o1, 2) 1s
covered by effective surface electrode and F(o;, o) = 0, if (o1, a) is not covered by the
effective surface electrode. For the piezoelectric transducer shown in Figure 2, the four
electrode dimensions can be defined as

O<a; <L, 0r1 <oip <0Opa,

O =—S+5(k=1, Oo=7+3(k=1), k=1234 2)
Therefore, F(oy,a,) can be written as

F(on,00) = [H(e) = H(on — L)|[H(oz = Or1) — H(oz — O] 3)

where H(x — x¢) is the Heaviside step function, which equals 1 if x > x( and equals 0 if
x<xg. The voltage, V, applied at the different electrode has different time function, as
shown in Figure 2.
The actuator equations for the piezoelectric cylindrical shell expressed in displacements
uy, u» and u3 under the applied voltage can be written as [4]
ON7} 1 ON3; . ONY,
8061 +§ 80(2 _phul - 80(1 ’
ONT,, n l<8N§”2 oMY, n 1 8M§§> ity — 10N5, 1 0M3,
80(1 R 8062 80(1 R 8062 R 8062 R2 8062 ’
M 20°My 1 MY Ny B *M¢, 1 OPMS, N5,
92 ROudu, R® 942 R 92 "R 92 R’

4)

The equations are obtained based on thin shell theory, and the effects of shear
deformation and rotary inertia are not included. In equation (4), the terms with the
superscript m are mechanical related forces, while the terms with the superscript e are
electric related forces. With Love’s simplifications, the strain—displacement relations can
be expressed as

Sii=S), +oari, Sn=S%+oskan, Si=S),+wKn, (5)
where
g o 10w us g 10w 0wy
1 80{1’ 2 R(%(z R’ 12 Raofz (90(17 6
o — 82u3 Koy — 1 81/12 82u3 K1y — 1 81/[2 b 821/[3 ( )
e Do’ 27 R\ 0y 003 )’ 27RO, “0mon )
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In equation (4), mechanical membrane forces Ny and bending moments M’ are given by

K(1—u)

Nip = K(SU) + 1S%), N5 = K(S5, +uSYy), Ny = Sh

(1 - ) 0

2

where K = Eh/(1 — u?) is the membrane stiffness and D = Eh*/[12(1 — p2)] is the bending
stiffness. The electric membrane forces Nj; and bending moments Mj; can be obtained as

M = D(kiy + pkan), M3 = D(kn + pxyy), MY, = K,

N, =N3, = / e31 B3 das, My, = M5, = / ez Esas dag, (8)
A

o3

where e3; is the transverse piezoelectric stress constant. According to equation (1), it can
be further expressed as

Ni| = N3 = —es1 V(1) F (a1, 02), My, = M3, =0. )
By substituting equations (5)—(9) into equation (4), the actuator equations can be
expressed based on the displacements u; as
L,](u]) — ,0/114, = {i, l,] = 172, 37 (10)
where the differential operators L;( - ) are given by
» K(l—p 1 & Kl+pw1 o
L11:K—2+M—2—2, 1= Utrwl ;
O 2 R? 03 2 R Ooi1 0oy

1 l—p® 1 & 10
Ly=(K+—D|(——+=—-), Li3=Ku—s—
2 ( TR )( > o2 Raz) T MRow

1 9 (/8 1 82 1 0
Ly =-D ( + )—i—K——, L3y = —Li3, L3 = —Lo;,

Ly = Ly,

TR \02 | R2 02 R2 Oy
a2 9 1 o 1
b = ‘D<a7§+ﬁm R_8_2> K
and
ONY,
N =5, = o V(6)[6(ar) — 6(or — L)][H(o2 — Ok1) — H(oa — Ox2)],

1 ON¢ e

02 =% 6022 = —% V(0)[H(otr) = H(oy — L)][6(ct2 — Op1) — (o2 — Op2)], (12
Ny e

G=—p =g V(6)[H(o) — H(on — L)][H(02 — Ox1) — H(o2 — Op2)],

where 0(x) is the Dirac delta function obtained by the derivative of the Heaviside step
function. ¢; are the exciting force generated by the electric source.

3. APPROXIMATE SOLUTIONS

As it is known, the transducer is excited under fundamental bending mode dominated
vibration during operation of the cylindrical micromotor. This understanding can help us
to simplify the treatment. Based on the analysis in reference [2], the displacements u; of the
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cylindrical transducer may be written in the form

ul(ocl, o, l) = —ClRW/((Xl)COS(wI — 062)7
uz(ocl,ocg, [) =G W(OC])Sil’l(a)l — OCQ),
us (o, 00, 1) = C3 W (0g)cos(wt — ), (13)

where W(ay) is the fundamental bending mode shape of a transversely vibrating beam,
which can represent the behaviour of a transversely vibrating cylinder with similar
boundary conditions [5], and Cj, C> and C; are the constants related to the amplitude
components, which can be determined by using the shell equations (10). For the transverse
vibration of the cylinder-type transducer with free boundary conditions, the corresponding
beam function W (o) is given in equation (67).

It is noted from equation (13) that the displacements u; can be expressed by the
superposition of two vibrations perpendicular to each other, which are excited by two
electrical sources with 90° phase difference. By defining these two vibrations

ui(og,00,t) = Uf coswt, u(ay,0,t) = U sin ot (14)
with the mode shapes
Ui = C\[-RW'(ay)cos aa], Us = Co[—W(ay)sinoy], U;s = C3W(oy)cosa,  (15a)
and
Ul = Ci[-RW'(uy)sinoa], Us = Co[W(o)cosn], U; = C3W(ay)sin o, (15b)
respectively, the displacements u; can be further written as
ui(o, 00, 1) = uf (o1, 00, 1) + ui (01, 02, ). (16)

As shown in Figure 2, the vibration u{ is excited by the voltages V| cosw? and
—Vycos wt, respectively, applied at the two electrodes facing each other, while the
vibration u! is excited by the voltages V) sin wt and —V} sin wt, respectively, applied at
another pair of electrodes. It can be seen that these two vibrations have same dynamic
characteristics except the 90° phase difference. Therefore, we can take either one of the
vibrations to derive the dynamic characteristics.

3.1. EIGENSOLUTIONS

The vibrations described above can be solved following the Galerkin method [5]. For
eigenvalue analysis of the problem, external electric excitations are set to be zero, e.g.,
g; = 0. By substituting u{ or u} into the shell equations (10), and by applying Galerkin’s
method, one has

fo 1 (U;) + Lia(US) + Li3(U3) + phe® U | U R doty doyg = 0,
Jo ST L1 (U5) + Loao(U3) + Loz (U3) + phes* Us) U3 R doty doty = 0, (17)
[5 [T La1 (UF) 4 Ln(US) + Laz(U3) + pheo U] US R doy doty = 0,

where the differential operators L; are given in equation (11). Since the use of the mode

shape functions Uf or U can reach same eigenvalue results, the superscript ¢ or s in

equation (17) has been represented by the notation ¢. By substituting equation (15a) or
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(15b) into equation (17) and performing the integrations, we obtain the equations

pha? + ki k1> ki3 Ci
ka1 phw? + ky ko3 G p =0, (18)
ks k3o pho? + ks Cs
where
1 —u 1+u 7 1+u
k=KL — ——= kir=K———, ki3y=—-K—, ky=-K——I
1 < 3T SR >7 12 SR ki o >0,
D\/l—u 1 D1 D
kn=(K+—=||—1I —— kn=——=I+—=|K+— 19
2 ( +R2)< > N R2>’ 23 R 1+R2( +R2>’ (19)
2 1 D
ks = Kuly, ks = k3, k33D(ﬁ11 12> E<K+ﬁ>’
and

L= [H@W/dd)W doy [ [EW2day, b = [5(d* W /dod) W oty / 5 W2 do,
I = [H(&W/ded)(dW /day) oo / [5(d W /doty ) dary

Since the integrated functions in integrals (20) are related to the fundamental mode
shape of beam function, the integrals can be further simplified. Making use of the fact that
for the beam functions

(20)

d4 W(Otl)
dof
where 5 are the roots of the beam eigenvalue problem, the results of equation (20) can be

applied to various boundary conditions. By examining the properties of the mode shape
W (o), the ratios of the integrals can be approximately expressed as

h=-(n/L?, L=/l ©L=-(n/L. (22)

By setting the determinant of the coefficient matrix in equation (18) to be zero, the
characteristic equation of equation (18) is given as

o’ + aj0* + ay0* + a3 =0, (23)

= (/L)' W (1), (21)

where
ar = (ki1 + kxn + k33)/ ph,

ay = (kiikay + knkss + kskyy — kiokar — kasksy — kaikis)/(ph)?, (24)

a3 = (knkaksy — kikasksy — kasksikiy — kaskiaka + kaikisksy + kaikiakas) /(ph)’.

Solving the characteristic equation (23), three frequencies are obtained as

2 ' 2 y+2
w%:—?/a%—mzcosg—%, w%:—?/a%—i%azcos/—; n_%7

25
wz:f%\/azf3azcosy+4n—ﬂ 2
3 3V 3 3’
where
27 2a3 -9
y = cos 121D tod (26)

23/ (a? = 3ay)’

Here the frequencies correspond to the bending, longitudinal, and circumferential mode
dominated vibrations of the cylinder respectively. Usually, the lowest frequency is
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associated with the mode where the transverse component dominates, while the other two
are associated with the mode where the in-plane longitudinal and in-plane circumferential
component dominates respectively. To have the transducer under the bending mode
dominated vibration, the applied frequency should be close to the frequency of bending
mode.

Substituting equation (25) into equation (18), the corresponding modal amplitude ratios
of the ith component frequency are obtained as

Cy; _Gi_ ki3(phos} + kx) — kiokas
C G (pho} + k1) (pho + kx) — kiokar” (27)
- . 2 _ _ '
Cy = Gi_ kas(phw; + kit) — kaikis = Gi_

Cs; (phw? + ki1)(pho? + kxn) — kinka’

Therefore, the three component modes, which are associated with the three frequencies w;
for the selected mode shape (15a) and (15b), are given by

&Y

Uf, —C1iRW' cos o Us; —C1iRW'sin o,
Us, » = —CyWsino, ¢, Us, p = CoiWcosa, - (28)
Us; W cos o Us; W sin o,

3.2. RESPONSE UNDER ELECTRIC SOURCES

If damping effect ¢ is considered, the governing equations (10) can be extended as
Lyj(w;) — cit; — phity = q;,  i,j=1,2,3. (29)
By defining the differential operator vectors
L; ={Li,Ln, L5}, (30)
where Lj; are given in equation (11), equation (29) can be further written as
Li{ul,uz,u_g}T—czki—phili:q;, i,j=1,2,3. (31)

The dynamic responses for the two pairs of the applied electric sources with 90° phase
difference can be represented, respectively, by the summation of the mode components
given in equation (28) as

3
OCI,OQ’ Z ialyaz nk ) c=95¢, i:172737 (32)
=1

where #{.(¢) and 5} (7) are the modal participation factors. Substituting equation (32) into
equation (31) gives

3

Z[”k { Ui U, gk}T_cﬂlchigk_phﬁi'Uigk =q;, i=123. (33)
k=1

Since U;, #0, it is known from equation (17) that
L{U;,, Us,, U} = —phol U, i=1,2,3, (34)
where wy is given by equation (25). Substituting equation (34) into equation (33) yields
3

N - | I
Z[(nﬁﬁn/’cwiniw&] = —p—hq?, i=123. (35)
k=1
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Multiplying equation (35) by a modal shape U, ¢ on both sides and integrating it over the
cylinder surface, we have

3 2n
Z(ﬂk + nk + CU/("Ik / / (Z U:k )R dop dog

k=1
1 L 2z 3
_EA/OEEE%M@M' (36)
i=1

Using the orthogonal conditions of the modal shapes, the above expression can be
simplified as

i, + 200, + i, = 4, k=1,2,3, (37)

where

2n 2n
g, = th// (Zq, lk)Rdcczdocl, N,:—// ( (U3) >Rdoczdoc1, (38)
k

and (; is defined as the damping ratio given by

4

le = (39)

2phwy
For the applied electric sources shown in Figure 2, the exciting force components ¢; can
be expressed as

gt (o, 00, 1) = Q% (oty, 2 )c0s wt = QF (ary, 02)

j(m/2—wt)

40
q; (o, 00, 1) = Qf(ou1, o)sin wt = Q; (o, o2)€’ !

where Qf(a,a2) and Qf(ai,a0) are the spatial part of the excitations, which can be
obtained according to equation (12) as

Qi (a1, 00) = —e31[0(1) — 0(oy — L)][H(oa — Ox1) — H(oa — 0k2)] V5

031, %2) = —{H(m) = H(on = D)8z = 0) =8 = OV (a1)
03(o1,92) = R [H(o) = H(on = L)|[H (o2 = 0ua) = H(o = 012)] 5

and V; are defined according to the notations in equation (2) as

Vo,  On<oan<b, Vo, 02 <o <0,
V(; = —V(), 031 <O!2<032, VS = —V(), 041 <O!2<042, (42)
0 for other oy, 0 for other o.

Therefore, equation (38) can be written as

g (o, o, 1) = Q5 (o, 00)&", (o, 00, 1) = O (001, 02)&l (7270, (43)

" 1 L pr2n 3 L
i=1

where

0
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Substituting equation (40) into equation (37), the steady state responses can be obtained in
the form as

s (1) = 2 Hy ()i = Ageior),
W
o (45)
r]i([) = %Hk(w)ej(nﬁ—wt) — Aiej(n/2—10t+¢k),
Wy
where
1 ) )
Hi(w) = 2, - = |Hk(w)|eﬂ¢"7 ¢, = arctan M7
1= (w/wr)” + 20w/ w 1 — (/o)
‘ (46)
[He(w)| = -
\/[1 - (cu/wk)z} +(2Lw /)’
and
.0 . 0
A = SHi ()], o3 He(@)l (47)

k

We now determine the expressions of Qk in equation (44). First, we determine N;.
Substituting the relevant modal components in equation (28) into the second expression of
equation (38), we obtain

R2C2 [5(@w Jday)* de L3
fO Wzdocl *

Therefore, by substituting equations (28), (41) and (42) into equation (44), the explicit
expressions of Q; can be obtained as

2V2e31 [ 5= (dW(0) dW(L) - L
Q Qk Qk W[R2C]k( dOCl - del ) + (1 — Czk)/o WdOC1:| Vo. (49)

Since Q,i = Qi, it is known from equation (47) that A; = Aj, which can be simply
denoted by Ay. Thus, from equations (45) and (32), we have

(0,02, 1) = Yoh AU (o2 )cos(ot — ),
ui(og, 00, 1) = Zk | Ak U (a1, 00)sin(of — ¢by).

Substituting equations (50) and (28) into equation (16), the steady state response of the
cylinder transducer excited by the electric sources shown in Figure 2 are obtained as

dW
up (o, 00,1) = Zk | Cux cos(wt — ¢y, — o2),

us (o, 00, 1) = WZk:1 Co Ay sin(wt — ¢y — 22),
uz (o, 00, 1) = szzl Ay cos(wt — ¢y — o).

If the applied frequency is very close to the bending frequency, say w;, equation (51) can
be further simplified as

Ny = N{ = Nj =R / W2 do. (48)

(50)

(51)

- aw
ul(otl,ocz,t) = 7RC11A1%COS(QZ — (]51 — 062),

uz(ocl,ocg, Z) = CzlAl WSiIl(CUZ — ¢1 — 062), (52)

uz(og, 00, 1) = Ay Weos(wt — ¢y — o).
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By comparing equation (52) with equation (13), it is found that the amplitude components
of the three displacement variables have been determined, which is impossible to be
determined by beam theory. Substituting equation (51) into equations (5)—(7), the strain
and stress components can be obtained, which are listed in Appendix A.

4. ELECTROMECHANICAL COUPLING EFFECTS

For the considered piezoelectric cylindrical shell with a hexagonal symmetrical
structure, the electric displacement component along the thickness direction, D3, is given
by

D3 = e31511 + €315 + 33 E3, (53)

where e33 is the dielectric permittivity. Substituting equation (A2) into equation (53), we
have

2

d
D3 =e33E5 + e3 Z[ (RCix + o3)— P
=1 o

%(1 — C) (1 n %) W} Ay cos(wt — ¢y — a2). (54)

It is noted that D3 is the summation of the two electric displacements D§ and D3, which are
induced by the two pairs of the voltages with 90° phase difference as shown in Figure 2.
Therefore, we have

2

. Ve d-w
D3:—p33hcoswt+631;[ RClk-I-OCs) da%

1

E(l — Cy)(1 O;) }Ak cos oy cos(wt — ¢y ),

Vs 3 &ew
Dj = —833—s1nwl+e31;[ RC1k+OC3) doc%
1 - o3 . .
+§ (1 —Cx) (1 +§) W] Ay sin o sin(wt — ¢y ), (55)

where V§ and V{ are defined in equation (42). Integrating either one of the expressions in
equations (55) over the electrode surfaces, we obtain the charge in the electrodes:

L 012 032
Q:/ ngQ:/ |:</ / >D‘3Rda2} docl
Qo 0 01 931
Rz(Clk+h)<dW )
dOﬁl =0

(1= o) (1 + %) /:Wdocl} Axcos(ot — ), (56)

dw

:—333—Vocoswt+2\/_e3lz ~ o
—L 1

h k=1

Substituting equations (47)—(49) into equation (56), we obtain
0 = CVyel = (Cy + Cp) Ve, (57)
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where C is the dynamic capacitance of the piezocylinder given by

RL
Co 2%833,
3
h dw dw
m: R2 Cix + ) -
;Nkwk ( 1k dOC] -0 docl w=L

2

+( _E:Zk)<1 —&—%)/deoq} Hy (o). (58)

If the frequency of the applied dynamic voltage w is very close to the bending
frequency wq, and the damping effect is not considered, C,, can be further reduced to for

h/2R< <1:
2
8e, | A [dW - [k 1
Cm:W[R C]] Tm ., +(1—C2]/0Wd0(1 m (59)

The current flowing into the electrode surfaces is calculated as

aw
=0 dOCl

1Y
I= = 60
5 =190 (60)
and the admittance is given by
I
Y=——=jwC. 1
Voe]wt ch (6 )

According to the definitions of resonance and antiresonance, the resonant frequency
can be determined by letting Y — oo, and the antiresonant frequency by Y =0.
Therefore, it can be found from equations (61) and (59) that the resonant frequency w,
is equal to the bending frequency w;, and the related antiresonant frequency w, is

obtained as
—_ L 2
>+<1—czl)/ Wdoq] (6
0(1:L 0

2 -
RN _lRC (d_W dw
With one of the definitions for electromechanical coupling coefficient k.5 defined by

051:0 dal

TERL,DNl €33 dO(]

. _oi-o
keff Ma (63)

the electromechanical coupling coefficients of the cylinder transducer at the bending
resonance mode can be estimated from relation (63).

To estimate the performance of a piezoelectric ultrasonic motor, a parameter called
force factor A is introduced [6]. It is defined as the force created when a unit voltage is
applied, or the current generated when unit velocity is imparted to the ceramic body.
We now determine the force factor of the cylinder transducer under bending vibration
mode.

From equations (60), (57), and (59), it is known that the displacement current 7, is
calculated by

L, = ijm VOeij

. 83, | s (AW dw
=jo—=L|R*C), | ——
prthl 1 dOC]

=0 dOC]

Voejwt

" (64)
1

_ L
>+(1—C21)/ Wdocl
o= =L 0
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The vibration velocity of the transducer at the end surface, under the bending vibration
mode, can be calculated from the expression in equation (52) as

81/[3 . A 1 i
V=50 e JcoW(L)Q,w% —¢ !
o o
, 2V2es1 | 5= (AW dw - /L Voele!
= —joW (L —|RCi| 5—| —— 1-C Wday | ———. (65
Jo W ( )thl [ P T +( 21) . v w0l — a? (65)

Therefore, the force factor A is obtained as

2V2e3:
w(L)

L

v

= (dwW dw - L
2 = - _
R Cll(dotl 2=0 doy al—L) +a CZI)/OWdOCI]

With the force factor, the performance of the cylindrical micromotors can be
estimated.

. (66)

5. NUMERICAL EXAMPLES AND DISCUSSIONS

In the above derivations, the displacements of the cylindrical transducer are assumed to
have the form shown in equation (13), in which W is the mode shape of a transversely
vibrating beam of the same boundary conditions with the cylinder. Since the cylinder
transducer is considered to have free—free boundary conditions, the first order free—free
beam bending mode is used. By substituting it into the above expressions, the relevant
results can be further simplified.

If the transducer is a uniform sized thin wall cylinder, the mode shape function of
uniform free—free beam is used, which is given by

W(%oq) = cosh %ac] + cos %ocl — CSCi)IiEZ——;(::
where 1 is the eigenvalue of the free—free beam. For the first beam mode, n = 4-730, we
have

(sinh%cx] + sin%ocl), (67)

L L L
/ W doy =0, / (AW /day)*  doy = 49-47965/L, / Wrda =L,
0 0 0

w(0) =

=W(L)=2, W(L)=—W(0)=929447/L. (68)

Therefore, the amplitude components Qk in equation (49) are simplified to

R 52-5827RC
— & Ciresl _ Vo (69)
Thp[49-4846R>C, + L*(Cy;, + 1))
and the force factor A in equation (66) is reduced to
26-2887R>C
4 = 20288 TR Cuesy (70)

L

As an example, the vibration characteristics of a piezoelectric tube are estimated
with the proposed method. The material properties of the tube are given by Young’s
modulus E=8-65x 10'°Pa; Density p=7-54 x 10°kg/m’; the Poisson ratio u=0-29;
and piezoelectric strain coefficient d3;=—0-45m/V. The geometry parameters of the
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tube are, outer diameter D,=3-2mm; inner diameter D;=2-4mm; and length
L=10-0mm. The measured first bending frequency is f; =87 kHz. According to the data
given above, the bending frequency estimated according to the beam theory [1] is
f1=76kHz. It is much lower than the measured result. The calculated frequency
components f; and the non-dimensional amplitude ratios C; according to the present
method are listed in Table 1.

In the table, the lowest frequency f] is associated with the bending mode, f> and f5 are
associated with circumferential and longitudinal modes respectively. It is seen that f5 and
f3 are one order higher than the magnitude of f|, and the corresponding modes are higher
modes comparing with the bending mode. Therefore, it is not difficult to excite the
required bending mode with the applied frequency close to f;. Comparing with the
measured bending frequency of the tube, the theoretical estimation by the method is
satisfied, and is better than the result obtained by the beam theory. With the frequencies
and the corresponding amplitude ratios obtained, the displacements can be calculated by
equation (52) and the force factor by equation (70).

To verify the validity of the present method by more examples, the data of three types of
stator transducers given in reference [7] are used for the calculations. The material
properties and the transducer dimensions are listed in Table 2.

The measured bending frequencies for types 1-3 transducers are 227, 110, and 72kHz
respectively. The calculated results based on the present method are given in Table 3. The
bending frequencies of the transducers obtained by the beam theory [1] are also listed for
comparisons. It can be seen that for the transducers of types 1 and 3, the calculated
bending frequencies based on the present method are better than that obtained by the
beam theory, while for type 2, the two methods provide similar estimations. It is due to the

TABLE 1

Frequencies and amplitude ratios of a piezoelectric tube

E=8-65x10""Pa, p=7-54 x 10°kg/m>, x=0-29, h=0-4mm, R=1-4mm, L=10mm

Ji (kHz) Ci Ca Cs

824 0-494 1-025 1-0

Jf2 (kHz) Ci Cxn Cy

602-0 0-702 —1-112 1-0

f3 (kHz) Cis Cx Cs

334.4 —3.844 ~0-164 1.0
TABLE 2

Dimensions of three types of stator transducers

E=1-1x10""N/m? p=4-51 x 10* kg/m?, u=0-3

h (mm) R (mm) L (mm)
Type 1 0-1 0-65 5
Type 2 0-25 1.075 10

Type 3 01 065 10
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TABLE 3

Calculated frequencies and amplitude ratios

fi(kHz)  f, Ci Ca 2 Ci C» fa Cis Ca3
] (kHz) (KH2) (KH2)
Type 1 221 229.5 0-530 1-028 1877-6 0-696 —1-108 10139 —4.337 —0-128
Type 2 104 103-8 0-628 1-032 11202 0-653 —1-072 572-0 —6-044 0-019
Type 3 74.5 72.5 0-823 1-020 18140 0-603 —1-026 8321 —14-83 0-150

reason that the geometries of types 1 and 3 transducers are closer to thin shell structures
than that of type 2 transducer. Therefore, the present method based on thin shell theory
provides better estimations for types 1 and 3 transducers than the estimations for the
transducers of type 2 and previous example. By comparing the results obtained by the
present method and the beam theory, it is seen that the present method generally provides
better estimations. _

From Table 3, we can also find that the non-dimensional amplitude ratio Cj; is
close to unit for all types of the transducers. By referring to the mode shape
and displacement expressions (28) and (52), it physically means that for the bending
vibration, the difference of the maximum amplitudes for the circumferential and radial
components, u, and us, is very small. This is in agreement with the approximate analysis in
reference [2] based on beam bending mode. However, the ratio Cy; cannot be determined
there.

With the obtained amplitude ratio C, the force factor A can be predicated according to
equation (70). Reference [7] also gives an expression to predicate the force factor, which
can be simplified as

13-1445R%e3,

A= (71)

Comparing with the expression, it is seen that the force factor given in equation (70)
has one more parameter, C;;, which cannot be determined with the one-dimensional
beam theory. With the piezoelectric coefficient e5; to be —0-57 C/m?, the force factors for
the cylinder-type stator transducers are estimated by Equations (70) and (71) respectively.
The results are given in the Table 4, in which the measured values in reference [7] are also
listed for reference. It can be seen that the overall estimated results by equation (70) are
satisfied. Furthermore, the maximum output force F,,,, can be estimated by the relation
AV, and the maximum output torque by A VR, where V is the amplitude of the applied
voltage.

TABLE 4

Estimated force factors

e31 =—0-57 (C/m?)

A (mN/V)
Reference [7] Equation (70) Equation (71)
Type 1 0-61 0-67 0-63
Type 2 I-1 1-09 0-87

Type 3 0-44 0-52 0-32
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The rotating speed of the cylindrical motor can be estimated by the relation
v = Ouy/0t|,,,, [2]. By substituting the expression of u, from equation (52), we have

v =CAW(L)w = C,W(L)w %|H(w)|

_ CW(L)w 52:5827RCes e, (1)

“’2\/[1 - (0/o)] 2 (o)) TOHIABAORE + L2(C + 1))

It can be seen that the rotating speed of this kind of motors is indeed linearly proportional
to the amplitude of input voltage as measured in reference [7]. To estimate the speed with
equation (72), the structure damping of the transducer {; should be known at first through
some way.

6. CONCLUDING REMARKS

In the present paper, the vibration of the cylindrical stator transducer induced by
applied voltage is studied based on shell theory. According to the motion principle of the
transducer, the displacement components are properly assumed so that a one-wavelength
travelling wave motion, as shown in Figure 1, can be generated by the displacements.
Therefore, the displacement components can be expressed by the superposition of two
same vibration modes but perpendicular to each other, which are excited by two pairs of
electrical sources with 90° phase difference respectively. The properties of the vibration
modes, such as mode frequencies, amplitude ratios of the mode shapes, are determined
following the Galerkin method. The response of the transducer under the four electric
sources with 90° phase difference are then obtained by the modal summation method.
With the results, the performance of the transducer under the electric sources can be
estimated.

Since the vibration of the transducer is analyzed based on more reasonable elastic
cylinder model, and the applied electric forces are also well modelled, the present work
provides a generalized theoretical modelling on the dynamical movement of the
transducer. The numerical examples show that the results obtained by the model are
satisfied. This study is a modification of the one-dimensional beam model used in the
literature for the analysis of this kind of the stator transducers. For further study, the
overall dynamical analysis of the cylindrical micromotors, including stator transducer,
rotors and preload, should be considered. It would be more complicated because more
factors, such as contact forces, frictional characteristics, contact surface properties, and
temperature effect, will be involved.
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APPENDIX A
Substituting equation (51) into equations (5)—(7), we have the strain components
81/!1 d2
SY, = oy d 2 Z CixAx cos(wt — ¢y — o),
1 8u2 u3 3
522 = R&x ; (1 — Cox)Ag cos(wt — ¢y — o),
1ow,  Ouy dW g~ - = :
SO =——— 4 = =" (Cu — Ci)Ax t— ¢ — o), Al
12 R@OCQ + 6061 dOC] ;( 2k 1/) k Sln(w ¢k OCZ) ( )
821/{3 d2
K11 :_T“%: doc2 ZAkcos ot — ¢y — a2),

=1

1 8u2 (921/{3 -
Ky = ﬁ(% — Tx% = EW Z(l - Czk)Ak COS((UI — d)k - 062),

Ki2 =

( 222 ) R do; Z(CZk = 2)Aisin(o — ¢y — o), (A2)

(90(1 60(180(2 =
and
W~ -
S = S(l)l + 03K = — P (RC1k + 0(3)/\/( COS((U! — d)k - 062),
1 k=1

3
Sy = 8% + o3y = (1 +“—I§) WS (1 — Co)As cos(t — ¢y — a2),
k=1

S = SlZ + 3K = d Z[(l + R) Cor — élk — 2} Ay sin(wt — ¢, — o). (A3)
The mechanical membrane forces V' and bending moments M are obtained as

3 2
- d -
Nt = K(S), + uSY,) KZ[ RC +%(1 — Cu) W] Ay cos(wt — ¢y — o),
1

3 2

1 - - dw
Ny = K(S(z)2 + ,uS(fl) =K E [E (1 = Coy)W — uRCyy A }Ak cos(wt — ¢y — o),
k=1 1

K(1 - dw g
"o ( 5 'u)S?z 2 d—z (Cok = Ci)Ag sin(wt — ¢y — o), (A4)
[

and



m
M}

m
M3,

m
M5, =
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3 2
d-w -
D(Kll + ,uKzz) = DZ |:— d—(x% —l—% (1 — Czk)W:| Ak COS(CL)Z — ¢k — Otz),
k=1
.01 - >w
D(Kzz—i—,uKH)ZD ﬁ(l—czk)W—M P Akcos(wl—¢k—oc2),
=1 o

D(1 —p) D1 — ) dW S~ -

5K = o dTl;(Cz’f — 2)Ay sin(wt — ¢y — ). (AS)
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