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In the present paper, the vibration of a cylindrical piezoelectric transducer induced by
applied voltage, which can be used as the stator transducer of a cylindrical micromotor, is
studied based on shell theory. The transducer is modelled as a thin elastic cylinder. The
properties of the vibration modes of the transducer, such as mode frequencies and
amplitude ratios of the mode shapes, are determined following Galerkin method. The
response of the transducer under the four electric sources with 908 phase difference is then
obtained by the modal summation method. With the results, the performance of the
transducer under the electric sources can be estimated. The present work provides a general
and precise theoretical modelling on the dynamical movement of the transducer.
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1. INTRODUCTION

Closed circular cylindrical shell type piezoelectric transducers have been widely used in
electromechanical devices. One of the successful applications is in the development of
cylindrical-type ultrasonic micromotors [1]. The key component of the motors is a filmed
or bulk piezoelectric tube called cylindrical stator transducer, as shown in Figure 2. It
consists of a piezoceramic tube, four equal strip electrodes, where the electric wires are
connected. The poling direction of the cylinder is in the thickness direction. When two
opposite electric sources with applied frequency, which can excite fundamental bending
mode of the cylinder, are connected to one pair of the electrodes facing each other, the
bending vibration of the stator transducer is generated by the piezoelectric length-
extensional effect. By applying four such electrical sources with 908 phase difference to
each other simultaneously, the rotation mode of the stator transducer is excited, and a
one-wavelength travelling wave is generated on the end surfaces of the stator, which drives
the rotors in contact with the transducer by frictional forces. The motion principle of the
motor is briefly shown in Figure 1.

Although the cylindrical ultrasonic micromotors have been investigated for many years,
most of the efforts are essentially experimental. Theoretical modelling seems to lag behind
22-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.



Figure 1. Principle of cylindrical ultrasonic micromotor [1].

Figure 2. A radially polarized piezoelectric circular cylindrical transducer.
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the experiments. The existing work in the literature is based on simple beam bending
model [1, 2]. Due to restriction of the one-dimensional model, the dynamical
characteristics of the motors cannot be well predicted. Therefore, it is necessary to
construct more reasonable model for the cylindrical-type motors.

In the present study, the vibration of the cylindrical stator transducer of the motor is
addressed. For simplicity, the contact forces between the stator and the rotor are not
considered. The stator transducer is modelled as a thin closed cylindrical shell. The applied
electric sources are treated as equivalent forces acting on the cylinder. To solve the shell
equations, the form of the dynamic displacement components of the cylinder model is
assumed based on the motion principle of the motor, and Galerkin method is applied to
obtain the approximate dynamic characteristics. With the analysis, the mode shapes, the
resonance frequencies, the vibration amplitudes, and the performance of the cylindrical
transducer can be estimated.
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2. EQUATIONS OF MOTION

A piezoelectric cylindrical transducer closed in the a2 direction is shown in Figure 2. The
thickness, length, and mean radius of the cylinder are denoted by h, L, and R respectively.
The transducer can be defined by cylindrical co-ordinate system with a1-, a2-, and a3- axis,
in which a1 defines the longitudinal direction (length), a2 the circumferential direction, and
a3 the transverse direction.

For the thin piezoelectric shell poled in radial direction, only electric field E3 along the
thickness direction is considered. For the applied voltage V, the electric field E3 can be
expressed as [3]

E3 ¼ � VðtÞ
h

Fða1; a2Þ; ð1Þ

where Fða1; a2Þ designates the effective surface electrode, that is, Fða1; a2Þ ¼ 1; if ða1; a2Þ is
covered by effective surface electrode and Fða1; a2Þ ¼ 0; if ða1; a2Þ is not covered by the
effective surface electrode. For the piezoelectric transducer shown in Figure 2, the four
electrode dimensions can be defined as

05a15L; yk15a25yk2;

yk1 ¼ � p
4
þ p

2
ðk � 1Þ; yk2 ¼

p
4
þ p

2
ðk � 1Þ; k ¼ 1; 2; 3; 4: ð2Þ

Therefore, Fða1; a2Þ can be written as

Fða1; a2Þ ¼ ½Hða1Þ �Hða1 � LÞ�½Hða2 � yk1Þ �Hða2 � yk2Þ�; ð3Þ

where Hðx � x0Þ is the Heaviside step function, which equals 1 if x > x0 and equals 0 if
x5x0: The voltage, V, applied at the different electrode has different time function, as
shown in Figure 2.

The actuator equations for the piezoelectric cylindrical shell expressed in displacements
u1, u2 and u3 under the applied voltage can be written as [4]
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The equations are obtained based on thin shell theory, and the effects of shear
deformation and rotary inertia are not included. In equation (4), the terms with the
superscript m are mechanical related forces, while the terms with the superscript e are
electric related forces. With Love’s simplifications, the strain–displacement relations can
be expressed as

S11 ¼ S0
11 þ a3k11; S22 ¼ S0

22 þ a3k22; S12 ¼ S0
12 þ a3k12; ð5Þ
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In equation (4), mechanical membrane forces Nm
ij and bending moments Mm

ij are given by

Nm
11 ¼ KðS0

11 þ mS0
22Þ; Nm

22 ¼ KðS0
22 þ mS0

11Þ; Nm
12 ¼

Kð1� mÞ
2

S0
12;

Mm
11 ¼ Dðk11 þ mk22Þ; Mm

22 ¼ Dðk22 þ mk11Þ; Mm
12 ¼

Dð1� mÞ
2

k12;
ð7Þ

where K ¼ Eh=ð1� m2Þ is the membrane stiffness and D ¼ Eh3=½12ð1� m2Þ� is the bending
stiffness. The electric membrane forces Ne

ij and bending moments Me
ij can be obtained as

Ne
11 ¼ Ne

22 ¼
Z

a3
e31E3 da3; Me

11 ¼ Me
22 ¼

Z
a3

e31E3a3 da3; ð8Þ

where e31 is the transverse piezoelectric stress constant. According to equation (1), it can
be further expressed as

Ne
11 ¼ Ne

22 ¼ �e31VðtÞFða1; a2Þ; Me
11 ¼ Me

22 ¼ 0: ð9Þ

By substituting equations (5)–(9) into equation (4), the actuator equations can be
expressed based on the displacements ui as

LijðujÞ � rh .uui ¼ qi; i; j ¼ 1; 2; 3; ð10Þ

where the differential operators Lijð � Þ are given by
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and
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where dðxÞ is the Dirac delta function obtained by the derivative of the Heaviside step
function. qi are the exciting force generated by the electric source.

3. APPROXIMATE SOLUTIONS

As it is known, the transducer is excited under fundamental bending mode dominated
vibration during operation of the cylindrical micromotor. This understanding can help us
to simplify the treatment. Based on the analysis in reference [2], the displacements ui of the
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cylindrical transducer may be written in the form

u1ða1; a2; tÞ ¼ �C1RW 0ða1Þcosðot � a2Þ;
u2ða1; a2; tÞ ¼ C2Wða1Þsinðot � a2Þ;
u3ða1; a2; tÞ ¼ C3Wða1Þcosðot � a2Þ; ð13Þ

where Wða1Þ is the fundamental bending mode shape of a transversely vibrating beam,
which can represent the behaviour of a transversely vibrating cylinder with similar
boundary conditions [5], and C1, C2 and C3 are the constants related to the amplitude
components, which can be determined by using the shell equations (10). For the transverse
vibration of the cylinder-type transducer with free boundary conditions, the corresponding
beam function Wða2Þ is given in equation (67).

It is noted from equation (13) that the displacements ui can be expressed by the
superposition of two vibrations perpendicular to each other, which are excited by two
electrical sources with 908 phase difference. By defining these two vibrations

uc
i ða1; a2; tÞ ¼ Uc

i cosot; us
i ða1; a2; tÞ ¼ Us

i sinot ð14Þ

with the mode shapes

Uc
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2 ¼ C2½�Wða1Þsin a2�; Uc
3 ¼ C3Wða1Þcos a2 ð15aÞ

and
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1 ¼ C1½�RW 0ða1Þsin a2�; Us

2 ¼ C2½Wða1Þcos a2�; Us
3 ¼ C3Wða1Þsin a2; ð15bÞ

respectively, the displacements ui can be further written as

uiða1; a2; tÞ ¼ uc
i ða1; a2; tÞ þ us

i ða1; a2; tÞ: ð16Þ

As shown in Figure 2, the vibration uc
i is excited by the voltages V0 cosot and

�V0 cosot; respectively, applied at the two electrodes facing each other, while the
vibration us

i is excited by the voltages V0 sinot and �V0 sinot; respectively, applied at
another pair of electrodes. It can be seen that these two vibrations have same dynamic
characteristics except the 908 phase difference. Therefore, we can take either one of the
vibrations to derive the dynamic characteristics.

3.1. EIGENSOLUTIONS

The vibrations described above can be solved following the Galerkin method [5]. For
eigenvalue analysis of the problem, external electric excitations are set to be zero, e.g.,
qi ¼ 0: By substituting uc

i or us
i into the shell equations (10), and by applying Galerkin’s

method, one hasR L
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where the differential operators Lij are given in equation (11). Since the use of the mode
shape functions Uc

i or Us
i can reach same eigenvalue results, the superscript c or s in

equation (17) has been represented by the notation B: By substituting equation (15a) or
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(15b) into equation (17) and performing the integrations, we obtain the equations
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and
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Since the integrated functions in integrals (20) are related to the fundamental mode
shape of beam function, the integrals can be further simplified. Making use of the fact that
for the beam functions

d4Wða1Þ
da41

¼ ðZ=LÞ4Wða1Þ; ð21Þ

where Z are the roots of the beam eigenvalue problem, the results of equation (20) can be
applied to various boundary conditions. By examining the properties of the mode shape
Wða1Þ; the ratios of the integrals can be approximately expressed as

I1 ffi �ðZ=LÞ2; I2 ¼ ðZ=LÞ4; I3 ffi �ðZ=LÞ2: ð22Þ
By setting the determinant of the coefficient matrix in equation (18) to be zero, the

characteristic equation of equation (18) is given as

o6 þ a1o4 þ a2o2 þ a3 ¼ 0; ð23Þ
where
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a3 ¼ ðk11k22k33 � k11k23k32 � k22k31k13 � k33k12k21 þ k21k13k32 þ k31k12k23Þ=ðrhÞ3:
Solving the characteristic equation (23), three frequencies are obtained as
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where

g ¼ cos�127a3 þ 2a3
1 � 9a1a2

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2

1 � 3a2Þ3
q : ð26Þ

Here the frequencies correspond to the bending, longitudinal, and circumferential mode
dominated vibrations of the cylinder respectively. Usually, the lowest frequency is
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associated with the mode where the transverse component dominates, while the other two
are associated with the mode where the in-plane longitudinal and in-plane circumferential
component dominates respectively. To have the transducer under the bending mode
dominated vibration, the applied frequency should be close to the frequency of bending
mode.

Substituting equation (25) into equation (18), the corresponding modal amplitude ratios
of the ith component frequency are obtained as

%CC1i ¼
C1i

C3i
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i þ k22Þ � k12k23

ðrho2
i þ k11Þðrho2

i þ k22Þ � k12k21

;

%CC2i ¼
C2i

C3i

¼ � k23ðrho2
i þ k11Þ � k21k13

ðrho2
i þ k11Þðrho2

i þ k22Þ � k12k21

; %CC3i ¼
C3i

C3i

¼ 1:

ð27Þ

Therefore, the three component modes, which are associated with the three frequencies oi

for the selected mode shape (15a) and (15b), are given by
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3.2. RESPONSE UNDER ELECTRIC SOURCES

If damping effect c is considered, the governing equations (10) can be extended as

LijðujÞ � c ’uui � rh .uui ¼ qi; i; j ¼ 1; 2; 3: ð29Þ

By defining the differential operator vectors

Li ¼ fLi1;Li2;Li3g; ð30Þ

where Lij are given in equation (11), equation (29) can be further written as

Lifu1; u2; u3gT � c ’uui � rh .uui ¼ qi; i; j ¼ 1; 2; 3: ð31Þ

The dynamic responses for the two pairs of the applied electric sources with 908 phase
difference can be represented, respectively, by the summation of the mode components
given in equation (28) as
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where Zc
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equation (31) gives
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Multiplying equation (35) by a modal shape U B
ip on both sides and integrating it over the

cylinder surface, we have
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Using the orthogonal conditions of the modal shapes, the above expression can be
simplified as

.ZZBk þ 2zkok ’ZZ
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k þ o2
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and zk is defined as the damping ratio given by

zk ¼ c

2rhok

: ð39Þ

For the applied electric sources shown in Figure 2, the exciting force components qB
i can

be expressed as
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where Qc
i ða1; a2Þ and Qs

i ða1; a2Þ are the spatial part of the excitations, which can be
obtained according to equation (12) as
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and V B
0 are defined according to the notations in equation (2) as
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Therefore, equation (38) can be written as
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Substituting equation (40) into equation (37), the steady state responses can be obtained in
the form as

Zc
kðtÞ ¼

#QQ
c

k

o2
k
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jðot�fkÞ;
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We now determine the expressions of #QQ
B
k in equation (44). First, we determine NB

k:
Substituting the relevant modal components in equation (28) into the second expression of
equation (38), we obtain

Nk ¼ Nc
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ðdW=da1Þ2 da1R L

0 W 2 da1
þ %CC

2

2k þ 1

" #Z L

0

W 2 da1: ð48Þ

Therefore, by substituting equations (28), (41) and (42) into equation (44), the explicit
expressions of #QQ

B
k can be obtained as

#QQk ¼ #QQ
c

k ¼ #QQ
s

k ¼ � 2
ffiffiffi
2

p
e31

rhNk

R2 %CC1k

dWð0Þ
da1

� dWðLÞ
da1

� �
þ ð1� %CC2kÞ

Z L

0

W da1

� �
V0: ð49Þ

Since #QQ
c

k ¼ #QQ
s

k; it is known from equation (47) that Lc
k ¼ Ls

k; which can be simply
denoted by Lk: Thus, from equations (45) and (32), we have

uc
i ða1; a2; tÞ ¼

P3
k¼1 LkUc

ikða1; a2Þcosðot � fkÞ;
us

i ða1; a2; tÞ ¼
P3

k¼1 LkUs
ikða1; a2Þsinðot � fkÞ:

ð50Þ

Substituting equations (50) and (28) into equation (16), the steady state response of the
cylinder transducer excited by the electric sources shown in Figure 2 are obtained as

u1ða1; a2; tÞ ¼ �R
dW

da1

P3
k¼1

%CC1kLk cosðot � fk � a2Þ;

u2ða1; a2; tÞ ¼ W
P3

k¼1
%CC2kLk sinðot � fk � a2Þ;

u3ða1; a2; tÞ ¼ W
P3

k¼1 Lk cosðot � fk � a2Þ:

ð51Þ

If the applied frequency is very close to the bending frequency, say o1; equation (51) can
be further simplified as

u1ða1; a2; tÞ ¼ �R %CC11L1
dW

da1
cosðot � f1 � a2Þ;

u2ða1; a2; tÞ ¼ %CC21L1W sinðot � f1 � a2Þ;
u3ða1; a2; tÞ ¼ L1W cosðot � f1 � a2Þ:

ð52Þ
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By comparing equation (52) with equation (13), it is found that the amplitude components
of the three displacement variables have been determined, which is impossible to be
determined by beam theory. Substituting equation (51) into equations (5)–(7), the strain
and stress components can be obtained, which are listed in Appendix A.

4. ELECTROMECHANICAL COUPLING EFFECTS

For the considered piezoelectric cylindrical shell with a hexagonal symmetrical
structure, the electric displacement component along the thickness direction, D3; is given
by

D3 ¼ e31S11 þ e31S22 þ e33E3; ð53Þ

where e33 is the dielectric permittivity. Substituting equation (A2) into equation (53), we
have

D3 ¼ e33E3 þ e31
X3
k¼1

�ðR %CC1k þ a3Þ
d2W

da21

�

þ1

R
ð1� %CC2kÞ 1þ a3

R

�  
W

�
Lk cosðot � fk � a2Þ: ð54Þ

It is noted that D3 is the summation of the two electric displacements Dc
3 and Ds

3; which are
induced by the two pairs of the voltages with 900 phase difference as shown in Figure 2.
Therefore, we have

Dc
3 ¼ � e33

V c
0

h
cosot þ e31

X3
k¼1

�ðR %CC1k þ a3Þ
d2W

da21

�

þ 1

R
ð1� %CC2kÞð1þ

a3
R
ÞW
�
Lk cos a2 cosðot � fkÞ;

Ds
3 ¼ � e33

V s
0

h
sinot þ e31

X3
k¼1

�ðR %CC1k þ a3Þ
d2W

da21

�

þ 1

R
ð1� %CC2kÞ 1þ a3

R

�  
W

�
Lk sin a2 sinðot � fkÞ; ð55Þ

where V c
0 and Vs

0 are defined in equation (42). Integrating either one of the expressions in
equations (55) over the electrode surfaces, we obtain the charge in the electrodes:

Q ¼
Z

O0

Dc
3 dO ¼

Z L

0

Z y12

y11
þ
Z y32

y31

� �
Dc

3R da2

� �
da1

¼ � e33
pRL

h
V0 cosot þ 2

ffiffiffi
2

p
e31
X3
k¼1

�R2 %CC1k þ
h

2R

� �
dW

da1

!!!!
a1¼L

� dW

da1

!!!!
a1¼0

 !"

þð1� %CC2kÞ 1þ h

2R

� �Z L

0

W da1

�
Lkcosðot � fkÞ; ð56Þ

Substituting equations (47)–(49) into equation (56), we obtain

Q ¼ CV0e
jot ¼ ðC0 þ CmÞV0e

jot; ð57Þ
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where C is the dynamic capacitance of the piezocylinder given by

C0 ¼
pRL

h
e33;

Cm ¼ 8e231
rh

X3
k¼1

1

Nko2
k

R2 %CC1k þ
h

2R

� �
dW

da1

!!!!
a1¼0

� dW

da1

!!!!
a1¼L

 !"

þð1� %CC2kÞ 1þ h

2R

� �Z L

0

W da1

�2
HkðoÞ: ð58Þ

If the frequency of the applied dynamic voltage o is very close to the bending
frequency o1; and the damping effect is not considered, Cm can be further reduced to for
h=2R551:

Cm ¼ 8e231
rhN1

R2 %CC11
dW

da1

!!!!
a1¼0

�dW

da1

!!!!
a1¼L

 !
þ ð1� %CC21

Z L

0

W da1

" #2
1

o2
1 � o2

: ð59Þ

The current flowing into the electrode surfaces is calculated as

I ¼ @Q

@t
¼ joQ; ð60Þ

and the admittance is given by

Y ¼ I

V0ejot
¼ joC: ð61Þ

According to the definitions of resonance and antiresonance, the resonant frequency
can be determined by letting Y ! 1; and the antiresonant frequency by Y ¼ 0:
Therefore, it can be found from equations (61) and (59) that the resonant frequency or

is equal to the bending frequency o1; and the related antiresonant frequency oa is
obtained as

o2
a ¼ o2

1 þ
8

pRLrN1

e231
e33

R2 %CC11
dW

da1

!!!!
a1¼0

� dW

da1

!!!!
a1¼L

 !
þ ð1� %CC21Þ

Z L

0

W da1

" #2
: ð62Þ

With one of the definitions for electromechanical coupling coefficient keff defined by

k2
eff ¼ o2

a � o2
r

o2
a

; ð63Þ

the electromechanical coupling coefficients of the cylinder transducer at the bending
resonance mode can be estimated from relation (63).

To estimate the performance of a piezoelectric ultrasonic motor, a parameter called
force factor A is introduced [6]. It is defined as the force created when a unit voltage is
applied, or the current generated when unit velocity is imparted to the ceramic body.
We now determine the force factor of the cylinder transducer under bending vibration
mode.

From equations (60), (57), and (59), it is known that the displacement current Im is
calculated by

Im ¼ joCmV0e
jot

¼ jo
8e231
rhN1

R2 %CC11
dW

da1

!!!!
a1¼0

� dW

da1

!!!!
a1¼L

 !
þ ð1� %CC21Þ

Z L

0

W da1

" #2
V0e

jot

o2
1 � o2

: ð64Þ
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The vibration velocity of the transducer at the end surface, under the bending vibration
mode, can be calculated from the expression in equation (52) as

v ¼ @u3

@t

!!!!
a1¼L a2¼0

¼ joWðLÞ #QQ1

1

o2
1 � o2

e iot

¼ �joWðLÞ2
ffiffiffi
2

p
e31

rhN1
R2 %CC11

dW

da1

!!!!
a1¼0

� dW

da1

!!!!
a1¼L

 !
þ ð1� %CC21Þ

Z L

0

W da1

" #
V0e

iot

o2
1 � o2

: ð65Þ

Therefore, the force factor A is obtained as

A ¼ Im

v

!!!!
!!!! ¼ 2

ffiffiffi
2

p
e31

WðLÞ R2 %CC11
dW

da1

!!!!
a1¼0

� dW

da1

!!!!
a1¼L

 !
þ ð1� %CC21Þ

Z L

0

W da1

" #!!!!!
!!!!!: ð66Þ

With the force factor, the performance of the cylindrical micromotors can be
estimated.

5. NUMERICAL EXAMPLES AND DISCUSSIONS

In the above derivations, the displacements of the cylindrical transducer are assumed to
have the form shown in equation (13), in which W is the mode shape of a transversely
vibrating beam of the same boundary conditions with the cylinder. Since the cylinder
transducer is considered to have free–free boundary conditions, the first order free–free
beam bending mode is used. By substituting it into the above expressions, the relevant
results can be further simplified.

If the transducer is a uniform sized thin wall cylinder, the mode shape function of
uniform free–free beam is used, which is given by

W
Z
L
a1

�  
¼ cosh

Z
L
a1 þ cos

Z
L
a1 �

cosh Z� cos Z
sinh Z� sin Z

sinh
Z
L
a1 þ sin

Z
L
a1

�  
; ð67Þ

where Z is the eigenvalue of the free–free beam. For the first beam mode, Z ¼ 4�730; we
have Z L

0

W da1 ¼ 0;

Z L

0

ðdW=da1Þ2 da1 ¼ 49�47965=L;

Z L

0

W 2 da1 ¼ L;

Wð0Þ ¼ WðLÞ ¼ 2; W 0ðLÞ ¼ �W 0ð0Þ ¼ 9�29447=L: ð68Þ
Therefore, the amplitude components #QQk in equation (49) are simplified to

#QQk ¼ 52�5827R %CC1ke31

phr½49�4846R2 %CC
2

1k þ L2ð %CC2

2k þ 1Þ�
V0; ð69Þ

and the force factor A in equation (66) is reduced to

A ¼ 26�2887R2 %CC11e31

L
: ð70Þ

As an example, the vibration characteristics of a piezoelectric tube are estimated
with the proposed method. The material properties of the tube are given by Young’s
modulus E=8�65� 1010 Pa; Density r=7�54� 103 kg/m3; the Poisson ratio m=0�29;
and piezoelectric strain coefficient d31=�0�45m/V. The geometry parameters of the
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tube are, outer diameter Do=3�2mm; inner diameter Di=2�4mm; and length
L=10�0mm. The measured first bending frequency is f1=87 kHz. According to the data
given above, the bending frequency estimated according to the beam theory [1] is
f1=76 kHz. It is much lower than the measured result. The calculated frequency
components fi and the non-dimensional amplitude ratios Cij according to the present
method are listed in Table 1.

In the table, the lowest frequency f1 is associated with the bending mode, f2 and f3 are
associated with circumferential and longitudinal modes respectively. It is seen that f2 and
f3 are one order higher than the magnitude of f1, and the corresponding modes are higher
modes comparing with the bending mode. Therefore, it is not difficult to excite the
required bending mode with the applied frequency close to f1. Comparing with the
measured bending frequency of the tube, the theoretical estimation by the method is
satisfied, and is better than the result obtained by the beam theory. With the frequencies
and the corresponding amplitude ratios obtained, the displacements can be calculated by
equation (52) and the force factor by equation (70).

To verify the validity of the present method by more examples, the data of three types of
stator transducers given in reference [7] are used for the calculations. The material
properties and the transducer dimensions are listed in Table 2.

The measured bending frequencies for types 1–3 transducers are 227, 110, and 72 kHz
respectively. The calculated results based on the present method are given in Table 3. The
bending frequencies of the transducers obtained by the beam theory [1] are also listed for
comparisons. It can be seen that for the transducers of types 1 and 3, the calculated
bending frequencies based on the present method are better than that obtained by the
beam theory, while for type 2, the two methods provide similar estimations. It is due to the
Table 1

Frequencies and amplitude ratios of a piezoelectric tube

E=8�65� 1010 Pa, r=7�54� 103 kg/m3, m=0�29, h=0�4mm, R=1�4mm, L=10mm

f1 (kHz) %CC11
%CC21

%CC31

82�4 0�494 1�025 1�0

f2 (kHz) %CC12
%CC22

%CC32

602�0 0�702 �1�112 1�0

f3 (kHz) %CC13
%CC23

%CC33

334�4 �3�844 �0�164 1�0

Table 2

Dimensions of three types of stator transducers

E=1�1� 1011N/m2 r=4�51� 103 kg/m3, m=0�3
h (mm) R (mm) L (mm)

Type 1 0�1 0�65 5
Type 2 0�25 1.075 10
Type 3 0�1 0�65 10



Table 3

Calculated frequencies and amplitude ratios

f 1ðkHzÞ
[1]

f 1

(kHz)

%CC11
%CC21 f2

(kHz)

%CC12
%CC22 f3

(kHz)

%CC13
%CC23

Type 1 221 229.5 0�530 1�028 1877�6 0�696 �1�108 1013�9 �4�337 �0�128
Type 2 104 103.8 0�628 1�032 1120�2 0�653 �1�072 572�0 �6�044 0�019
Type 3 74.5 72.5 0�823 1�020 1814�0 0�603 �1�026 832�1 �14�83 0�150
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reason that the geometries of types 1 and 3 transducers are closer to thin shell structures
than that of type 2 transducer. Therefore, the present method based on thin shell theory
provides better estimations for types 1 and 3 transducers than the estimations for the
transducers of type 2 and previous example. By comparing the results obtained by the
present method and the beam theory, it is seen that the present method generally provides
better estimations.

From Table 3, we can also find that the non-dimensional amplitude ratio %CC21 is
close to unit for all types of the transducers. By referring to the mode shape
and displacement expressions (28) and (52), it physically means that for the bending
vibration, the difference of the maximum amplitudes for the circumferential and radial
components, u2 and u3, is very small. This is in agreement with the approximate analysis in
reference [2] based on beam bending mode. However, the ratio %CC11 cannot be determined
there.

With the obtained amplitude ratio %CC; the force factor A can be predicated according to
equation (70). Reference [7] also gives an expression to predicate the force factor, which
can be simplified as

A ¼ 13�1445R2e31

L
: ð71Þ

Comparing with the expression, it is seen that the force factor given in equation (70)
has one more parameter, %CC11; which cannot be determined with the one-dimensional
beam theory. With the piezoelectric coefficient e31 to be �0�57C/m2, the force factors for
the cylinder-type stator transducers are estimated by Equations (70) and (71) respectively.
The results are given in the Table 4, in which the measured values in reference [7] are also
listed for reference. It can be seen that the overall estimated results by equation (70) are
satisfied. Furthermore, the maximum output force Fmax can be estimated by the relation
AV0 and the maximum output torque by AV0R, where V0 is the amplitude of the applied
voltage.
Table 4

Estimated force factors

e31=�0�57 (C/m2)
A (mN/V)

Reference [7] Equation (70) Equation (71)

Type 1 0�61 0�67 0�63
Type 2 1�1 1�09 0�87
Type 3 0�44 0�52 0�32
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The rotating speed of the cylindrical motor can be estimated by the relation
v ¼ @u2=@tjmax [2]. By substituting the expression of u2 from equation (52), we have

v ¼ %CC2LWðLÞo ¼ %CC2WðLÞo
#QQ

o2
HðoÞj j

¼
%CC2WðLÞo

o2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðo=oÞ2
h i2

þ 2zo=oð Þ2
r 52�5827R %CCe3

phr½49�4846R2 %CC
2 þ L2ð %CC2

2 þ 1Þ�
V0: ð72Þ

It can be seen that the rotating speed of this kind of motors is indeed linearly proportional
to the amplitude of input voltage as measured in reference [7]. To estimate the speed with
equation (72), the structure damping of the transducer z1 should be known at first through
some way.

6. CONCLUDING REMARKS

In the present paper, the vibration of the cylindrical stator transducer induced by
applied voltage is studied based on shell theory. According to the motion principle of the
transducer, the displacement components are properly assumed so that a one-wavelength
travelling wave motion, as shown in Figure 1, can be generated by the displacements.
Therefore, the displacement components can be expressed by the superposition of two
same vibration modes but perpendicular to each other, which are excited by two pairs of
electrical sources with 908 phase difference respectively. The properties of the vibration
modes, such as mode frequencies, amplitude ratios of the mode shapes, are determined
following the Galerkin method. The response of the transducer under the four electric
sources with 908 phase difference are then obtained by the modal summation method.
With the results, the performance of the transducer under the electric sources can be
estimated.

Since the vibration of the transducer is analyzed based on more reasonable elastic
cylinder model, and the applied electric forces are also well modelled, the present work
provides a generalized theoretical modelling on the dynamical movement of the
transducer. The numerical examples show that the results obtained by the model are
satisfied. This study is a modification of the one-dimensional beam model used in the
literature for the analysis of this kind of the stator transducers. For further study, the
overall dynamical analysis of the cylindrical micromotors, including stator transducer,
rotors and preload, should be considered. It would be more complicated because more
factors, such as contact forces, frictional characteristics, contact surface properties, and
temperature effect, will be involved.
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APPENDIX A

Substituting equation (51) into equations (5)–(7), we have the strain components

S0
11 ¼ @u1

@a1
¼ �R

d2W

da21

X3
k¼1

%CC1kLk cosðot � fk � a2Þ;

S0
22 ¼ 1

R

@u2

@a2
þ u3

R
¼ 1

R
W
X3
k¼1

ð1� %CC2kÞLk cosðot � fk � a2Þ;

S0
12 ¼ 1

R

@u1

@a2
þ @u2

@a1
¼ dW

da1

X3
k¼1

ð %CC2k � %CC1kÞLk sinðot � fk � a2Þ; ðA1Þ

k11 ¼ � @2u3

@a21
¼ � d2W

da21

X3
k¼1

Lk cosðot � fk � a2Þ;

k22 ¼ 1

R2

@u2

@a2
� @2u3

@a22

� �
¼ 1

R2
W
X3
k¼1

ð1� %CC2kÞLk cosðot � fk � a2Þ;

k12 ¼ 1

R

@u2

@a1
� 2

@2u3

@a1@a2

� �
¼ 1

R

dW

da1

X3
k¼1

ð %CC2k � 2ÞLksinðot � fk � a2Þ; ðA2Þ

and

S11 ¼ S0
11 þ a3k11 ¼ � d2W

da21

X3
k¼1

ðR %CC1k þ a3ÞLk cosðot � fk � a2Þ;

S22 ¼ S0
22 þ a3k22 ¼

1

R
1þ a3

R

�  
W
X3
k¼1

ð1� %CC2kÞLk cosðot � fk � a2Þ;

S12 ¼ S0
12 þ a3k12 ¼

dW

da1

X3
k¼1

1þ a3
R

�  
%CC2k � %CC1k � 2

h i
Lk sinðot � fk � a2Þ: ðA3Þ

The mechanical membrane forces Nm
ij and bending moments Mm

ij are obtained as

Nm
11 ¼ KðS0

11 þ mS0
22Þ ¼ K

X3
k¼1

�R %CC1k

d2W

da21
þ m

R
ð1� %CC2kÞW

� �
Lk cosðot � fk � a2Þ;

Nm
22 ¼ KðS0

22 þ mS0
11Þ ¼ K

X3
k¼1

1

R
ð1� %CC2kÞW � mR %CC1k

d2W

da21

� �
Lk cosðot � fk � a2Þ;

Nm
12 ¼ Kð1� mÞ

2
S0
12 ¼

Kð1� mÞ
2

dW

da1

X3
k¼1

ð %CC2k � %CC1kÞLk sinðot � fk � a2Þ; ðA4Þ

and
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Mm
11 ¼ Dðk11 þ mk22Þ ¼ D

X3
k¼1

� d2W

da21
þ m

R2
ð1� %CC2kÞW

� �
Lk cosðot � fk � a2Þ;

Mm
22 ¼ Dðk22 þ mk11Þ ¼ D

X3
k¼1

1

R2
ð1� %CC2kÞW � m

d2W

da21

� �
Lk cosðot � fk � a2Þ;

Mm
12 ¼ Dð1� mÞ

2
k12 ¼

Dð1� mÞ
2R

dW

da1

X3
k¼1

ð %CC2k � 2ÞLk sinðot � fk � a2Þ: ðA5Þ
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